360=10x+x^2+(5x+36)

Simple and best practice solution for 360=10x+x^2+(5x+36) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 360=10x+x^2+(5x+36) equation:



360=10x+x^2+(5x+36)
We move all terms to the left:
360-(10x+x^2+(5x+36))=0
We calculate terms in parentheses: -(10x+x^2+(5x+36)), so:
10x+x^2+(5x+36)
determiningTheFunctionDomain x^2+10x+(5x+36)
We get rid of parentheses
x^2+10x+5x+36
We add all the numbers together, and all the variables
x^2+15x+36
Back to the equation:
-(x^2+15x+36)
We get rid of parentheses
-x^2-15x-36+360=0
We add all the numbers together, and all the variables
-1x^2-15x+324=0
a = -1; b = -15; c = +324;
Δ = b2-4ac
Δ = -152-4·(-1)·324
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1521}=39$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-39}{2*-1}=\frac{-24}{-2} =+12 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+39}{2*-1}=\frac{54}{-2} =-27 $

See similar equations:

| Y=-1.6x+16 | | 3/4t-2=1/4 | | Y=-45x+180 | | 0=2x^2+8x | | 0.4x+1.2=3.2 | | 8-5x=-3 | | 3^2x-6=5.3^x | | a=5(10)+3 | | 4x+(14x-10+(8x+5=180 | | x(5+10)=30 | | 4+3(7+5(m+2))=10 | | 2^3x+1=5 | | y+(-2)=-19 | | 5(d+3)+2=2(d-3)+5 | | -4(4a-6)+8a=-40 | | 21-g=15 | | 6x^2+5x^2=187 | | 85.5+y=100 | | 85.5y=100 | | 68-x=0 | | 2-2x=5+7 | | 39.25x+12=247.50 | | 11.5x+50=188 | | 5x-4.36=24.26 | | 11.5x+60=129 | | -888.50-62.75x=2143.50 | | 18-3(z+5)=3z-12 | | 30x+203=360 | | 2143.50-888.50-62.75=x | | 10x-6+20x-9+79+109=360 | | 7b+2=22 | | 10x-6+20x-2+79=360 |

Equations solver categories